Teaching-learning-based optimization with a fuzzy grouping learning strategy for global numerical optimization
نویسندگان
چکیده
The Teaching-Learning-Based Optimization (TLBO) algorithm is a novel heuristic method that is inspired by the philosophy of teaching and learning in a class. In the “Teacher Phase” of the original TLBO algorithm, all learners are combined in one group and learn only from the teacher, which quickly leads to declining population diversity. Utilizing fuzzy K-means clustering to objectively divide all learners into smaller-sized groups more closely conforms to the modern idea of intra-class grouping for teaching and learning. Furthermore, fuzzy K-means clustering can objectively divide learners as nearly as possible according to their interests and abilities, which helps each learner to grow to his or her fullest extent. This paper presents a novel version of TLBO, TLBO with a Fuzzy Grouping Learning Strategy (FGTLBO), in which fuzzy K-means clustering is used to create K centers, each of which acts as the mean of its corresponding group. Performance and accuracy of the FGTLBO algorithm are examined on CEC2005 standard benchmark functions, and these results are compared with various other versions of TLBO. The experimental results verify that the FGTLBO algorithm is very competitive in terms of solution quality and convergence rate.
منابع مشابه
Elite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملOptimal Location and Sizing of Distributed Generations in Distribution Networks Considering Load Growth using Modified Multi-objective Teaching Learning Based Optimization Algorithm
Abstract: This paper presents a modified method based on teaching learning based optimization algorithm to solve the problem of the single- and multi-objective optimal location of distributed generation units to cope up the load growth in the distribution network .Minimizing losses, voltage deviation, energy cost and improved voltage stability are the objective functions in this problem. Load g...
متن کاملOperation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Fuzzy Systems
دوره 29 شماره
صفحات -
تاریخ انتشار 2015